Non-founder BRCA1 mutations in Russian breast cancer patients

Aglaya G. Iyevleva, Evgeny N. Suspitsin, Karin Kroze, Tatiana V. Gorodnova, Anna P. Sokolenko, Konstantin G. Buslov, Dmitry A. Voskresenskiy, Alexandr V. Togo, Sergey P. Kovalenko, Nienke van der Stoep, Peter Devilee, Evgeny N. Imyanitov

Abstract

A few founder BRCA1 mutations (5382insC, 4154delA, 185delAG) account for up to 15% of high-risk (young-onset or familial or bilateral) breast cancer (BC) cases in Russia. The impact of non-founder BRCA1 mutations in this country is less studied; in particular, there are no reports analyzing gross rearrangements of this gene in the Russian patient series. We selected for the study 95 founder mutation negative high-risk BC cases. Combination of high-resolution melting (HRM) and sequencing revealed six presumably BC-associated alleles (2080delA, 4808C > G, 5214C > T, 5236G > A, 5460G > T, 5622C > T) and one variant of an unknown significance (4885G > A). The pathogenic role of the 5236G > A mutation leading to G1706E substitution was further confirmed by the loss of heterozygosity analysis of the corresponding tumor tissue. Multiplex ligation-dependent probe amplification (MLPA) revealed two additional BRCA1 heterozygotes, which carried BRCA1 deletions involving exons 1–2 and 3–7, respectively. Based on the results of this investigation and the review of prior Russian studies, three BRCA1 mutations (2080delA, 3819del5, 3875del4) were considered with respect to their possible founder effect and tested in the additional series of 210 high-risk BC patients; two BRCA heterozygotes (2080delA and 3819del5) were revealed. We conclude that the non-founder mutations constitute the minority of BRCA1 defects in Russia.

1. Introduction

A noticeable share of breast cancer (BC) predisposition is attributed to the presence of BC-associated germ-line mutations. BRCA1 and BRCA2 lesions have been detected in various races, ethnicities and geographic regions, while the impact of other genes (CHEK2, PALB2, NBS1) appears to be somewhat more population-specific. Several countries and ethnicities demonstrate strong founder effects with respect to cancer genes [3]. For example, only three mutations (BRCA1 185delAG, BRCA1 5382insC and BRCA2 6174delT) account for the most of BRCA mutations in Ashkenazi Jews, while the BRCA2 999del5 serves as a major cause of hereditary breast–ovarian cancers in Iceland. Somewhat surprisingly, strong founder effect is also observed in a huge territory of Eurasia populated by people of Slavic descent, including Poland, Russia, Belarus and possibly some other countries. BRCA1 5382insC allele accounts for more than a half of all known BC-associated mutations in the area ranging from the Baltic Sea to the Pacific Ocean, while the contribution of other recurrent genetic lesions (BRCA1 4154delA (frequently quoted as
BRCA1 4153delA), BRCA1 185delAG, CHEK2 1100delC, CHEK2 IVS2 + 1G > A, NBS1 657del5) varies from region to region [4–11].

We have shown previously that BRCA1 founder mutations (5382insC, 4154delA and 185delAG) are frequently detected in so-called high-risk BC cases, i.e. in patients demonstrating clinical signs of familial cancer syndrome (early onset or family history or tumor bilaterality) [10]. It remains unknown, if there are some other founder BRCA1 mutations in Russia, and whether non-founder mutations also constitute a significant share of BRCA1 defects in this population. Furthermore, gross gene alterations constitute a noticeable portion of BRCA1 mutations in some countries and ethnicities [1], however, their relevance to Russian BC patients has not been investigated yet. The present study was aimed to address the above questions. We initially subjected 95 high-risk BC patients to the comprehensive analysis of BRCA1 small sequence alterations and large genomic rearrangements. We then pooled the results of our investigation and the available literature data, and identified three novel mutations with potential founder effect; these mutations have been tested in an independent panel of 210 genetically enriched BC cases.

2. Materials and methods

We initially considered 200 blood-derived DNA samples from BC patients, who were treated in N.N. Petrov Institute of Oncology (St.-Petersburg) between years 1998 and 2006, and bore at least one clinical sign of hereditary cancer (age ≤ 40 years, or BC or ovarian cancer in mother or sister, or bilateral form of the disease); 154 of these cases were detected in so-called high-risk BC cases, i.e. in patients demonstrating clinical signs of familial cancer syndrome (early onset or family history or tumor bilaterality) [10].

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>Genetic variant</th>
<th>Consequence</th>
<th>Clinical importance</th>
<th>Described in other countries/ethnicities</th>
<th>Number or submissions to the BIC database by December, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>1083</td>
<td>2080delA (c.1961delA)</td>
<td>K65455X47 (frameshift)</td>
<td>Deleterious</td>
<td>Canada (English) [13], Japan [14], Korea [15], Russia [16], Italy [17], Spain [18], USA (Dutch) [19]</td>
<td>31</td>
</tr>
<tr>
<td>498</td>
<td>4808C > G (c.4869C > G)</td>
<td>Y1563X (nonsense)</td>
<td>Deleterious</td>
<td>Germany [20], USA (Irish) [19], USA [21]</td>
<td>51</td>
</tr>
<tr>
<td>1148</td>
<td>4885G > A (c.4766G > A)</td>
<td>R1589H (missense)</td>
<td>Neutral (?)</td>
<td>Submitted by the Myriad Genetics Inc. to the Breast Information Core database</td>
<td>2</td>
</tr>
<tr>
<td>276</td>
<td>5214C > T (c.5093C > T)</td>
<td>R1699W (missense)</td>
<td>Deleterious</td>
<td>Germany [22], Sweden [23]</td>
<td>13</td>
</tr>
<tr>
<td>566</td>
<td>5236G > A (c.5117G > A)</td>
<td>G1706E (missense)</td>
<td>Deleterious (?)</td>
<td>Spain [24]</td>
<td>7</td>
</tr>
<tr>
<td>360</td>
<td>5460C > T (c.5341C > T)</td>
<td>E1781X (nonsense)</td>
<td>Deleterious</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1100</td>
<td>5622C > T (c.5503C > T)</td>
<td>R1835X (nonsense)</td>
<td>Deleterious</td>
<td>Germany [25], Pakistan [26], Philippines [27], the Netherlands [Breast Information Core database]</td>
<td>63</td>
</tr>
<tr>
<td>178</td>
<td>Deletion of the exons 1 and 2</td>
<td>Deleterious</td>
<td>Czech Republic [28], Germany [29], Italy [30], Poland [31]</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>990</td>
<td>Deletion of the exons 3–7</td>
<td>Deleterious</td>
<td>UK [32]</td>
<td>Not applicable</td>
<td></td>
</tr>
</tbody>
</table>

Point mutations are designated according to the commonly used nomenclature (Breast Information Core (BIC) database, http://research.nhgri.nih.gov/bic/). The Human Genome Variation Society (HGVS) identifiers are presented in brackets [33; see also http://www.hgvs.org/mutnomen/ for the update]. The 2080delA mutation, which corresponds to the last nucleotide in polyA(8) track, is designated as 2073delA in [16].
all negative for the most common Russian BC-predisposing mutations, i.e. BRCA1 5382insC, BRCA1 4154delA and CHEK2 1100delC [10]. BRCA1 2080delA allele was screened by HRM/sequencing analysis [12]. The 3819del5 and 3875del4 variants were analyzed by polyacrylamide gel electrophoresis using primers AGAGCTTCCCTGCT- and TCAGCAGACACTGAAATATTTTCTAGG and CGGACACTGAAATATTTTCT- for the former, and TCAGCTTACTAGGTAGCTATGCTGCT, and CAATATTACCTGGT-C for the latter mutation, respectively.

The detection of the loss of heterozygosity (LOH) in the BRCA1 locus in the tumor sample carrying the 5236G > A mutation was done using allele-specific primers CCGAC-ACTGAAATATTTTCTAGG and CCGACACTGAAATATTTTCTAGA, and the common primer TAGGTGTAATATCTTGA, as described in Suspectsin et al. [38].

3. Results

HRM/sequencing analysis of 95 high-risk founder mutation-negative BC cases revealed seven samples with BRCA1 point mutations (Table 1). Six of these mutations have been already reported by other investigators, while the mutation 5460G > T appears to be novel. Four of seven identified BRCA1 sequence alterations (2080delA, 4808C > G, 5460G > T and 5622C > T) lead to the frameshift or stop-codon and therefore are clearly pathogenic. The 5214C > T missense mutation affecting codon 1699 is also classified by the Breast Information Core (BIC) database (http://research.nhgri.nih.gov/bic/) as BC-predisposing mutation, based on ample laboratory and clinical evidence.

Two other missense mutations, 4885G > A and 5236G > A, are classified by the BIC resource as variants with an unknown significance. Tumors triggered by the germ-line BRCA1 defect are frequently characterized by somatic deletion of the remaining (wild-type) allele of the gene, therefore loss of heterozygosity (LOH) analysis is regarded as an efficient tool to discriminate between pathogenic and neutral nucleotide substitutions [39]. The corresponding tumor tissue was available only from the patient carrying the 5236G > A variant; the LOH test revealed an unambiguous somatic loss of the intact BRCA1 allele (Fig. 1).

For the MLPA study we considered 89 remaining DNA samples, which did not contain deleterious micromutations (Table 1). Eighty-five specimens had a sufficient quality of DNA for the detection of large genetic alterations. The MLPA test identified two tumors with the BRCA1 inactivation; both these mutations have been already reported previously (Table 1).

Based on results of the present study and the available literature data [16,34–37], three mutations may deserve testing with respect to possible founder effect (Tables 1 and 2). One of the mutations identified in our patient series, 2080delA, has been previously described in Russian ovarian cancer family [16] and is mentioned in subsequent manuscripts of the same group of authors [35,37]. Another variant, 3819del5, has been detected in two unrelated patients in the study of Grudinina et al. [36]. Carriers of the 3875del4 allele were identified by Gayther et al. [16] and Grudinina et al. [36]. We undertook the analysis of the three mentioned mutations in the additional series of 210 high-risk, founder-mutation-negative BC cases, and revealed two heterozygous patients carrying the 2080delA and the 3819del5 variants, respectively.

4. Discussion

This is so far the largest BRCA1 study performed on Russian high-risk BC patients, and the first report assessing contribution of gross rearrangements of the gene in BRCA1 mutational spectrum in Russia. It confirms that non-founder mutations constitute the minority of BRCA1 defects in this country. Indeed, the screening for three recurrent BRCA1 mutations (5382insC, 4154delA and 185delAG) in the initial set of 200 high-risk BC patients led to the identification of 30 (15%) carriers. However, when 95 of the remaining founder mutation negative cases were subjected to the comprehensive BRCA1 analysis, only eight clearly pathological variants were identified. These data are consistent with other Russian studies [34,35,37].

Importantly, a single deleterious variant, the 5382insC, is identified in more than a half of all BRCA1 mutation carriers in Russia. Given the high frequency of this mutation in non-selected BC cases (3.7% [40]), one would argue for an extended application of BRCA1 5382insC test in the clinical setting. There are several other BRCA1 deleterious alleles which demonstrate a trend towards non-random occurrence in Russia. Given the high frequency of this mutation in non-selected BC cases, and revealed two heterozygous patients carrying the 2080delA and the 3819del5 variants, respectively.

![Fig. 1. Loss of the wild-type BRCA1 allele in the tumor obtained from the G1706E mutation carrier. Real-time PCR demonstrates simultaneous amplification of both intact and mutated allele in the blood DNA, while only the latter is amplified in the tumor sample.](image)
p Grettingo the LOH data; some studies argue that the LOH analysis has limited power to discriminate between BC-predisposing and neutral BRCA1 variants [41,42]. The 5236G > A mutation results in the replacement of glycine by glutamine in the codon 1706. BIC database still refers to the unknown clinical importance of the G1706M mutation. However, there is a number of research communications providing arguments for the deleterious impact of the 5236G > A allele: in addition to the preferential somatic inactivation of the wild-type allele, this substitution co-segregates with the disease in cancer families, affects an evolutionary conservative aminoacid site, modifies the conformation of the BRCA1 molecule [24,43–47].

Based on the literature data, this variant is classified as pathogenic by both BIC and LOVD databases as the variant with an unknown significance. Some indirect evidence suggests neutral role of this mutation in determining BC risk [47].

While the picture of BRCA1 mutations in Russia is getting clear, little has been done for the analysis of BRCA2 gene alterations (Table 2). Studies from the neighboring countries, Poland, demonstrate negligible impact of this gene in Slavic familial breast/ovarian cancers [4]. Smirnova et al. [37] analyzed exon 11 of the BRCA2 gene in 74 ovarian cancer patients from Moscow, and detected no deleterious alterations. However, in the study of high-risk BC cases from Russian Siberia, the frequency of BRCA2 mutations exceeded the one for BRCA1 gene [34]. Therefore, the comprehensive study on the impact of the BRCA2 alterations in breast/ovarian cancer in Russia is highly warranted.

Until recently, the efforts for the identification of BRCA1/2 carriers were aimed mainly at the identification of women-at-risk. Given the contemporary medical realities in Russia, such as shortage of funds and insufficient acceptance of preventive interventions, large-scale application of the comprehensive BRCA1 testing may be considered premature; instead, introduction of a panel of simple and non-expensive founder mutation tests may be viewed as a good compromise for the time being [10]. Furthermore, our earlier study has demonstrated that as many as 1.3% BC patients without any clinical signs of hereditary BC (i.e. unilateral BC cases aged above 60 years and report-}

Table 2 Sequencing analysis of BRCA1 gene in Russian patients.

<table>
<thead>
<tr>
<th>Study</th>
<th>Subjects</th>
<th>Founder mutations</th>
<th>Non-founder mutations</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gayther et al. [16]</td>
<td>19 families with at least two first-degree relatives affected by ovarian cancer (Moscow and some other regions of Russia)</td>
<td>5382insC (9), 4154delA (3)</td>
<td>2080delEΔ (1), 3875delEΔ (1)</td>
<td>BRCA2 analyzed as well; four mutations identified</td>
</tr>
<tr>
<td>Tereschenko et al. [34]</td>
<td>25 breast/ovarian cancer families, 22 patients ≤ 40 years, six bilateral BC patients (Siberia)</td>
<td>5382insC (3)</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Loginova et al. [35]</td>
<td>49 patients with familial breast cancer (Moscow)</td>
<td>5382insC (15), 185delAG (1)</td>
<td>2274insA (1), 2963del10 (1), 3726C > T (1), 3819delEΔ (2), 3875delEΔ (1)</td>
<td></td>
</tr>
<tr>
<td>Grudinina et al. [36]</td>
<td>43 high-risk BC patients (St.-Petersburg)</td>
<td>5382insC (4)</td>
<td>2080delEΔ (1)</td>
<td></td>
</tr>
<tr>
<td>Smirnova et al. [37]</td>
<td>54 ovarian cancer patients (Moscow)</td>
<td>5382insC (7), 4154delA (1), 185delAG (1), 300T > G (2)</td>
<td>2080delEΔ (1), 4808C > G (1), 5214C > T (1), 5236G > A (1), 5460G > T (1), 5622C > T (1), deletion of the exons 1 and 2 (1), deletion of the exons 3–7 (1)</td>
<td>BRCA2 exon 11 analyzed as well; no deleterious mutations identified</td>
</tr>
<tr>
<td>Present study</td>
<td>95 high-risk BC patients, carriers of founder mutations excluded</td>
<td>Not applicable</td>
<td>Large gene rearrangements considered</td>
<td></td>
</tr>
</tbody>
</table>

The number of subjects with mutation is indicated in brackets. BRCA1 mutations are designated according to the commonly used BIC nomenclature. Their corresponding HGVS designations are: 185delAG = c.60デleAG, 300T > G = c.181T > G, 2080delEΔ = c.196デleAΔ, 2274insA = c.2157_2158insA, 2963del10 = c.2844_2853デle10, 3726C > T = c.3607C > T, 3819delEΔ = c.3700_3704デleGTAAA, 3875delEΔ = c.3756_3759デleGCTC, 4154delA = c.4034delA, 4808C > G = c.4688C > G, 5214C > T = c.5095C > T, 5236G > A = c.5117G > A, 5382insC = c.5266dupC, 5460G > T = c.5341G > T, 5622C > T = c.5503C > T [33; see also http://www.hgvs.org/mutnomen/ for the update]. BRCA1 4154delA mutation (BIC nomenclature) is frequently quoted as BRCA1 4153delEΔ in the literature [1].

Conflict of interest

None declared.

Acknowledgements

The work is supported by the Federal Agency for Science and Innovations (Contract 02.740.11.0780), Russian
Foundation for Basic Research (RFBR) (Grants 08-04-00369, 09-04-04002, 09-04-13779, and 10-04-92601), the Government of Moscow (Grant 15/09), the International Union Against Cancer (IUIC) (ICRETT Fellowships ICR/07/053 and ICR/08/005) and the Commission of the European Communities (Grant PTIN-GA-2009-238132).

References

[42] E. Beristain, I. Guerra, N. Vidaurrazaga, J. Burgos-Bretones, M.I. Tejada, LOH analysis should not be used as a tool to assess whether UVs of BRCA1/2 are pathogenic or not, Fam. Cancer, in press.

